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We calculate the time evolution of fluctuations for rare particles such as e.g. kaons in 1 AGeV or
charmonium in 200 AGeV heavy ion collisions. We find that these fluctuations are a very sensitive
probe of the degree of chemical equilibration reached in these collisions. Furthermore, measuring
the second factorial moment the size of the initial population can be determined.

I. INTRODUCTION

Statistical models have long been used as a tool to de-
scribe particle production in heavy ion and in high energy
particle collisions [1–3]. Recent analysis have shown that
these models can indeed give a satisfactory description
of the multiplicities of most hadrons measured in A-A
collisions for bombarding energies ranging from 1 AGeV
(SIS) to 160 AGeV (SPS) [4,5]. Especially at the low
energies (SIS) and for the rare particles such as kaons,
the success of the statistical description has been a puz-
zle and could not be understood within the state-of-the-
art transport models [6]. For instance a recent analy-
sis for chemical equilibration within a transport model
[6] gives chemical equilibration time of the order of 300
fm/c for a situation relevant to 1 AGeV heavy ion col-
lisions, considerably larger than the typical duration of
such reaction, which is of the order of 30-50 fm/c. On
the other hand the success of the statistical model cannot
be disputed. Not only are the particle ratios reproduced
for central collision over a wide range of bombarding en-
ergy, but also the centrality dependence at low energies
is consistent with the predictions of the statistical mod-
els. In particular the almost quadratic dependence of the
kaon multiplicity on the number of participating nucleon
at SIS follows directly from the statistical model, once
strangeness conservation is taken into account exactly [7].
Transport models on the other hand fail to reproduce the
observed centrality dependence and particularly energy
dependence of the K/π-ratio [8].

In a recent paper [9] some of us have shown, that the
chemical equilibration time is considerably shortened if
the strangeness conservation is taken into account ex-
plicitly. However, using the new rate equations derived
in this work combined with the cross sections as given
in [14] one still arrives at equilibration time substantially

exceeding the lifetime of the system.
Does this mean that the success of the statistical model

is a pure coincidence? This is very unlikely as statistical
model naturally explains most of the basic features of
experimental data in a very broad energy range from SIS
up to SPS. It is conceivable that there are additional
processes at work, like e.g. many particle collisions [15] or
in medium modifications of hadron properties [16], which
are not yet taken into account in transport models.

Thus, a direct experimental determination of the rate
of equilibration in heavy ion collisions is called for as it
would possibly provide evidence for new physics. In this
paper we will demonstrate that the fluctuations of rare
particles is a very sensitive probe of the degree of equili-
bration reached in these collisions. Such a measurement,
though certainly difficult, could for the first time provide
a direct experimental evidence for chemical equilibration
in heavy ion reactions.

This paper is organized as follows. In the following sec-
tion we set up the formalism. Then we present the results
for the time dependence of the second factorial moment
for several initial conditions. Before we turn to observa-
tional issues we also will discuss the case when no con-
straints from any U (1) charge conservation are present.

II. FORMALISM

In Ref. [9] the rate equation for particles which are sub-
ject to an explicit U (1) “charge” conservation has been
derived. Considering a binary process a1a2 → b1b2 with
a 6= b one arrives at the following master equation for the
probabilities Pn to find n particles

dPn
dτ

= ε [Pn−1 − Pn]
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−
[
n2Pn − (n + 1)2Pn+1

]
, (1)

where n = 0, 1, 2, 3, · · ·. Here

ε ≡ G〈Na1〉〈Na2 〉/L, (2)

and the dimensionless time variable τ is defined as

τ = t
L

V
(3)

so that τ is measured in units of the relaxation time
τC0 = V/L [9]. The momentum-averaged cross sections
for the gain process a1a2 → b1b2 and the loss process
b1b2 → a1a2 are defined as G ≡ 〈σGv〉 and L ≡ 〈σLv〉, re-
spectively. The ratio of these momentum averaged cross
sections is related to the ratio of equilibrium particle den-
sities involved

G

L
=

db1α
2
b1
K2(αb1)db2α

2
b2
K2(αb2)

da1α
2
a1
K2(αa1)da2α

2
a2
K2(αa2)

, (4)

where dk’s denote the degeneracy factors, and αk ≡
mk/T .

Eq. (1) has no obvious solution and needs to be solved
numerically. The asymptotic (equilibrium) probability
distribution, on the other hand, has been derived in [9]

Pn,eq. =
εn

I0(2
√
ε) (n!)2

. (5)

leading to

〈N 〉eq. =
√
ε
I1(2
√
ε)

I0(2
√
ε)

= ε− ε2

2
+
ε3

3
+ . . . (6)

〈
N2
〉

eq.
= ε. (7)

The above general rate equation is valid for arbitrary
values of 〈N 〉 for particle production constrained by U (1)
charge conservation. It reduces to the grand canonical re-
sults for large 〈N 〉 and to the canonical results for small
〈N 〉. It provides a generalization of the standard rate
equation beyond the grand canonical limit. It was shown
[9] that for rare particle production the equilibrium abun-
dance is much smaller and the relaxation time is much
shorter than expected from the standard rate equation.
In this paper we will discuss further consequences of the
generalized rate equation and in particular study the time
evolution of the multiplicity fluctuations. We want to
demonstrate that the combined information on both 〈N 〉
and 〈N 2〉 can help to determine the degree of chemical
equilibration.

III. RESULTS

In this work we will be mostly concerned with the fluc-
tuations of the particle number in the case of rare parti-
cle, i.e. 〈N 〉eq. � 1 or, equivalently, ε� 1. In particular

we will investigate the behavior of the second factorial
moment F2

F2 ≡
〈N (N − 1)〉
〈N 〉2

. (8)

From Eqs. (6) and (7) in the limit of small ε the equilib-
rium value for F2 is given by

F2 =
1

2
+
ε

6
+ . . . =

1

2
+
〈N 〉eq.

6
+ . . . (9)

In order for the second factorial moment to be a sen-
sitive probe of the degree of equilibrium achieved, one
needs to investigate its initial value. Here we consider
two distinct cases:

1. The initial particle number is considerably smaller
than the equilibrium value. This is relevant, for
example, for kaon production in 1 AGeV heavy ion
collisions.

2. The initial particle number is considerably larger
than the equilibrium value. This might be relevant
for charm production in 200 AGeV heavy ion colli-
sions [17]

In the first case, where the initial particle number is
small, let us consider two scenarios. On one hand, let us
assume that initially the probabilities Pn are distributed
according to a Poisson distribution:

Pn(τ = 0) =
Nn

0

n!
e−N0 , (10)

where N0 is the initial average number of particles. In
this case, the factorial moment obviously starts out at

F2(τ = 0) = 1 (11)

and decreases by a factor of two until equilibrium is
reached. On the other hand one may assume that ini-
tially there is at most one particle in a given event. In
this case the initial conditions are

P0(τ = 0) = 1− N0,

P1(τ = 0) = N0,

Pn(τ = 0) = 0 n > 1, (12)

which we will refer to as ‘binomial’ initial conditions. As
shown in Appendix A, F2 starts out at F2 = 0, but almost
immediately reaches a maximum after a time of the order
of

τmax '
N0

Neq.
(13)

and for N0/Neq. � 1, Fmax
2 ' 1.

Therefore F2 approaches equilibrium from above and
a measurement of F2 > 1/2 will indicate the degree of
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equilibrium that has been reached in a heavy ion colli-
sion. The detailed time and height, where F2 reaches a
maximum depend, of course, on the input parameters N0

and ε. The dependence of Fmax
2 on the ratio N0/Neq. for

ε = 0.1 is shown in Fig. 1 as the full line. The dashed line
in Fig. 1 is obtained by assuming τmax = 3N0/Neq. show-
ing that indeed the time scale for reaching the maximum
is given by N0/Neq..

We further see that for small N0 the factorial moment
essentially immediately reaches a value close to F2 = 1,
giving a factor of two sensitivity on the degree of non-
equilibrium established in the collisions. Obviously, in
the case where N0 ' ε = Neq. this sensitivity is lost, as
the equilibrium value is very close to the initial value.

0.0 0.1 1.0

τmax

0.6

0.7

0.8

0.9

1

F
2(τ

m
ax

)

N0/<N>eq.=0.2

N0/<N>eq.=0.01

FIG. 1. Location and value of the maximum of F2(τ)
for a range of values of N0/Neq. as indicated in the figure.
Here ε = 0.1 has been used. The dashed line assumes that
τmax = 3N0/Neq.
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FIG. 2. Time evolution of the factorial moment F2 for sev-
eral initial particle numbers N0 (thick lines). The thin lines
show the result of the approximate formula (A2). Here ε = 0.1
has been used.

Assuming binomial initial conditions in Fig. 2 we show

the full time evolution for several initial particle numbers.
For small times the approximate solution (A2) is also
shown. Clearly, the equilibrium value of F2 is reached
from above, but the effect becomes small as the initial
particle number becomes comparable with the equilib-
rium value.

In Fig. 3 we show the time evolution of F2 for differ-
ent choices of ε or, equivalently, for different equilibrium
particle numbers. Obviously, the larger the equilibrium
particle number is the smaller is the effect.
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<N>
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<N>
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N
0
/<N

eq.
>  = 0.1

FIG. 3. Time evolution of the factorial moment F2 for sev-
eral equilibrium numbers or equivalently values of ε. Here
binomial initial conditions with N0/Neq. = 0.1 have been cho-
sen.

For the second case when the initial population is much
bigger than the equilibrium population, then the annihi-
lation process must dominate during the early stage of
evolution for a short period of time. In this case, one
can look for a perturbative solution around ε = 0. Since
there can be many different initial conditions with a large
initial population, it is better here to use the generating
function [9]

g(τ, x) =

∞∑

n=0

xnPn(τ ), (14)

and the equation it satisfies

∂g

∂τ
= (1− x) (xg′′ + g′ − εg) . (15)

where the prime indicates a derivative with respect to x.
The averages needed to calculate the first two factorial
moments are given by

〈N 〉 = g′(τ, 1) and 〈N (N − 1)〉 = g′′(τ, 1). (16)

Details of the perturbative procedure can be found in
Appendix B. To understand the qualitative picture, first
consider the initial time τ = 0. Since we assume 〈N 〉 � 1

initially, we must have 〈N (N−1)〉 = O(〈N 〉2) and hence,
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F2 = O(1) at τ = 0. For τ >∼ 1, the first order perturba-
tive solutions are

〈N 〉 = 〈N 〉eq. + |a1| e−τ + O(e−4τ ), (17)

〈N (N−1)〉 = 〈N (N−1)〉eq. +
2 ε

5
|a1|e−τ + O(e−4τ ), (18)

where a1 is a O(1) constant determined by the initial
condition. From the above equations and using Eqs. (6)
and (7) the second factorial moment is then given by

F2(τ ) ' 1

2

ε2 + (4/5)ε |a1| e−τ
(ε+ |a1| e−τ )

2 . (19)

For times 1 <∼ τ <∼ − ln ε, the exponential terms in
Eq. (19) dominate. As a result, F2(τ ) = O(ε) within
the interval 1 <∼ τ <∼ − ln ε. Note that for arbitrarily
small ε, this interval can be arbitrarily long. Also, since
O(ε) � F2(0) and O(ε) � F eq.

2 , F2 must reach a mini-
mum somewhere inside that interval.

For illustration, let us choose a Poissonian initial distri-
bution with N0 = 5 and also set ε = 0.1. The numerical
solutions and Eq. (19) as well as the second order per-
turbative solution are displayed in Fig. 4. The numerical
solution clearly shows the rapid initial decrease and the
subsequent slower rise to the equilibrium value. To illus-
trate the duration of the small F2 interval, we also show
the full numerical result with ε = 0.001. The longer pe-
riod of time where F2 stays to be O(ε) is clearly visible.

0 1 2 3 4 5
τ

0

0.2

0.4

0.6

0.8

1

F
2(

τ)

Full solution
Second order solution
First order solution
Full solution : ε = 0.001

ε = 0.1

ε = 0.001

FIG. 4. The second factorial moment as a function of time.
Initial distribution is a Poisson distribution with N0 = 5.
ε = 0.1. The solid line represents the numerical solution.
The dashed line is the result of the second order perturbative
calculation and the dot-dashed line is the result of the first or-
der perturbative calculation. Also shown is the full numerical
solution with the same initial condition and ε = 0.001.

To sum up, F2 as a function of time must:

(i) Start from O(1).

(ii) Reach the minimum value of O(ε) at τ ∼ 1 which
is much smaller than F eq.

2 = 1/2 +O(ε).

(iii) Stay O(ε) until τ ∼ − ln ε.

(iv) Approach the equilibrium value from below after
τ ∼ − ln ε. This is in contrast to the first case
where we considered N0 � 〈N 〉eq..

Hence, if experimental value of F2 is smaller than 1/2,
then it is a strong indication that the equilibrium is not
reached and furthermore it also indicates that the initial
population was much larger than the equilibrium one.

IV. ABSENCE OF U(1)-CHARGE
CONSERVATION

It is interesting to also study particle production with-
out the constraint of U (1) charge conservation. Obvi-
ously the time evolution equation for the multiplicity
distribution should be different from what we have de-
scribed so far for strongly correlated processes. Let us
consider a general process a + b ↔ c + d without any
constraint of charge conservation. We denote Pn as the
multiplicity distribution for particle c. It then satisfies
the following evolution equation,

dPn
dτ̃

= ε̃[Pn−1 − Pn]− [nPn − (n+ 1)Pn+1], (20)

where τ̃ = τ/ 〈Nd〉 = tL/V/〈Nd〉 is a scaled time and
ε̃ = ε/ 〈Nd〉 = G〈Na〉〈Nb〉/L/〈Nd〉.

The generating function g(τ̃ , x) for Pn

g(τ̃ , x) =

∞∑

n=0

xnPn(τ̃ ) (21)

satisfies the following partial differential equation,

∂g

∂τ̃
= (1− x)[g′ − ε̃g]. (22)

It is interesting to note that the above equation is very
similar to Eq. (15) for a constrained system except that
it does not contain the second derivative on the right-
hand side. Therefore, for certain period during which
one can neglect the second derivative of the generating
functions, the evolution of the multiplicity distribution in
a canonical system should be similar to that of a grand
canonical.

The general solution to the Eq. (22) can be found

g(τ̃ , x) = g0((1− x)e−τ̃ )eε̃(1−x)(e−τ̃−1) (23)

with the initial condition g(0, x) ≡ g0(1 − x). The nor-
malization condition g(τ̃ , x = 1) =

∑
Pn = 1 also implies

g0(0) = 1. One can readily find the equilibrium solution
in the limit τ̃ =∞,
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geq.(x) = e−ε̃(1−x) (24)

with the corresponding equilibrium multiplicity distribu-
tion

Pn,eq. =
ε̃n

n!
e−ε̃, (25)

which is a Poisson distribution with averaged multiplicity
〈N 〉eq. = ε̃. One can also easily calculate the first and
second factorial moments of the multiplicity distribution,

〈N 〉 = ε+ (〈N 〉0 − ε)e−τ̃ (26)

〈N (N − 1)〉 = 〈N (N − 1)〉0e−2τ̃

− 2ε〈N 〉0e−τ̃ (e−τ̃ − 1) + ε2(e−τ̃ − 1)2. (27)

They both approach to their equilibrium values exponen-
tially.

One interesting case of a special initial condition is
g0 = 1 when the initial multiplicity 〈N 〉0 is zero. Com-
paring Eqs.(23) and (24), one finds that the multiplicity
distribution in this case remains a Poissonian, and con-
sequently the factorial moment F2 = 1 at all times. For
the binomial initial conditions (Eq.(12)),

g(τ̃ = 0, x) = 1−N0(1− x), (28)

the factorial moment F2 starts out from F2(τ̃ = 0) = 0,
but approaches the equilibrium value via

F2 = 1− [N0/(ε̃(e
τ̃ − 1) +N0)]2 (29)

at a time scale of

τ̃ ' ln(1 +
√

2N0/ε̃) '
√

2N0/ε̃. (30)

Comparing the results presented here with the previous
section it is clear that an additional constraints imposed
by the U(1) charge conservation laws are implying a cru-
cial modification of not only the equilibrium probability
distributions of particle number but also their fluctua-
tions and time evolution towards the equilibrium limit.

V. TOWARDS EXPERIMENTAL OBSERVABLES

So far we have discussed the production of a single
species of particles with conserved quantum numbers,
such as e.g. K+-K−-pairs. In reality, however, one has to
deal with more than one species. For example at 1 AGeV
heavy-ion collisions the relevant strange degrees of free-
dom are K+ and K0 which carry positive strangeness
and the Λ and Σ hyperons carrying negative strangeness.
The anti-kaons are not relevant in this case as the ratio
of K−/K+ is very small (' 2% at 1.5 AGeV [10] ). The
results shown in the previous section thus apply to the
combined multiplicities for K+ and K0, i.e.

N = NK+ +NK0 . (31)

Very often, experiments can either measure K+ or K0

but not both species at the same time. The above mas-
ter equation has been extended for more than one particle
species carrying the conserved quantum number in ref-
erence [11]. The equation for the combined probability
Pi,j to find i K+ and j K0 mesons is given by

dPi,j
dτ

= ε1(Pi−1,j − Pi,j) + ε2
L2

L1
(Pi,j−1− Pi,j)

−(i(i + j)Pi,j − (i + 1)(i+ j + 1)Pi+1,j)

−L2

L1
(j(i + j)Pi,j − (j + 1)(i + j + 1)Pi,j+1), (32)

where τ = tL1

V
and ε1,2 ≡ G1,2〈Na1 〉〈Na2 〉/L1,2. The

equilibrium solution is given by [11]

P eq.
i,j =

εi+jtot

I0(2
√
εtot)((i + j)!)2

(i + j)!εi1ε
j
2

εi+jtot i!j!
(33)

with εtot ≡ ε1 + ε2. Note that the equilibrium probabil-
ity distribution is the product of the distribution of pairs
according to Eq. (5) and a binomial distribution, which
determines the relative weight of the individual particles,
in our case the K+ and K0. For the equilibrium config-
uration the relevant expectation values are then easily
computed

〈N1〉eq. = f1 〈N 〉εtot , (34)
〈
N2

1

〉
eq.

= f2
1

〈
N2
〉
εtot

+ f1(1 − f1) 〈N 〉εtot , (35)

F equil2 (K+) =
1

2
+
εtot
6

+ . . . (36)

where f1 = ε1/εtot. The average 〈〉εtot denotes the aver-
ages given in Eqs. (6) and (7) with ε → εtot For small
ε1,2 the effect of the second species only appears at next
to leading order in F2.

The master equation governing the particle of interest,
say the K+ is obtained by summing equation (32) over
the index of the particle which is not observed.

dPi
dτ

= ε1(Pi−1j − Pi)

−(i2Pi − (i+ 1)2Pi+1)

−(i
∑

j

jPi,j − (i + 1)
∑

j

jPi+1,j) (37)

with

Pi ≡
∑

j

Pi,j. (38)

Comparing with the original equation (1), the presence
of the other species, the K0 in our case, leads to the last
two terms of equation (37). However, in the situation
of interest here, where NK0 � 1 these terms can be ne-
glected. Thus we recover the original equation governing
the time evolution of the K+. This can also be seen in
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Fig. (5) where we compare the evolution of F2 based
on Eq. (1) with that based on Eq. (37). For the case
at hand, namely kaon production in heavy ion collisions,
isospin symmetry suggests that the production and ab-
sorption cross-section for K+ and K0 are roughly the
same, i.e. L1 = L2 and ε1 = ε2. Here we have assumed
that due to isospin symmetry the collision rates for both
kaon species are identical.

To summarize the effect of the second species leads to
a sub-leading correction ∼ εK0/6 '

〈
K0
〉
/6 which in the

present context is negligible.

0 1 2 3 4 5

τ
0.0

0.2

0.4

0.6

0.8

F
2(τ

)

0 1 2 3 4 5

τ

ε1 = 0.01
ε1 = 0.05
ε1 = 0.01,  no K

0

ε1 = 0.05,  no K
0

FIG. 5. Comparison of time evolution of f2 for one and
two particle species assuming binomial initial conditions and
N0 = 0.01

Let us now turn to the question of how to measure
these fluctuations in experiment. Since we are consid-
ering rare particles, the measurement of fluctuations are
obviously difficult. Here we propose to study the second
factorial moment. Therefore, besides the inclusive par-
ticle number 〈N 〉 one also has to measure 〈N (N − 1)〉.
The latter expectation value, however, is directly related
to the two particle density

ρ2(p1, p2) =
d2N

d3p1 d3p2
(39)

〈N (N − 1)〉 =

∫
d3p1 d

3p2 ρ2(p1, p2). (40)

It is interesting to note (see also [12] ) that the same
information enters the measurement of so called HBT or
Bose-Einstein (BE) correlations [13]. The BE-correlation
function as a function of the relative momentum is de-
fined as

CBE(q) =
ρ2(q)

ρ11(q)
, (41)

where

ρ2(q) ≡
∫
dp1dp2ρ2(p1, p2)δ(|p1 − p2| − q) (42)

and

ρ11(q) ≡
∫
dp1dp2ρ1(p1)ρ2(p2)δ(|p1 − p2| − q) (43)

Usually the CBE is parameterized as

CBE(q) = 1 + λe−q
2R2

(44)

so that outside the correlation region q � 1/Rsource the
correlation function assumes a value of one. However,
in case of rare particle subject to U (1) conservation law,
i.e. kaons at low energy heavy-ion collisions, this will be
different:

In terms of ρ2(q) and ρ11(q) the factorial moment F2

is given by

F2 =

∫
dqρ2(q)∫
dqρ11(q)

→ 1

2
, (45)

which, as shown, assumes a value of F2 = 1/2 in equilib-
rium as a result of strangeness conservation. Using, on
the other hand, the standard parameterization for the
BE-correlation function, one obtains

ρ2(q) = ρ11(q)(1 + λe−q
2R2

) (46)

and hence

F2 =

∫
dqρ2(q)∫
dqρ11(q)

= 1 + λ

∫
dqe−q

2R2

ρ11(q) > 1, (47)

where the second term is only a very small correction of
the order of a few percent, given a typical source size of
Rsource ' 5 fm [13]. Obviously the standard parameteri-
zation for the BE-correlation function is not adequate for
the case of rare particles subject to a conservation law.
Since the correlations due to strangeness conservation are
not expected to introduce any momentum dependence,
we thus predict, that the BE-correlation for rare parti-
cles subject to U (1) conservation should asymptotically
approach a value of 1/2, i.e.

CBE(q � 1/Rsource) '
1

2
. (48)

Therefore, the rather difficult measurement of kaon
correlations at heavy-ion collisions at 1 AGeV would not
only provide information about the size of the kaon emit-
ting source but, more importantly, would also be a di-
rect measurement of the degree of equilibrium reached in
these collisions.

VI. CONCLUSION

In this work, we addressed the question of number fluc-
tuations of rarely produced particles. We carried out the
analysis by solving the master equation derived in Ref.
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[9]. The most important aspect of the master equation
(1) is that we can treat the conservation laws that govern
the rare particles exactly. For instance, the strangeness
conservation for kaon production at the SIS energy can
be treated in this way. Comparing the results of sec-
tions III and IV certainly shows the difference such a con-
straint makes. In previous papers, some of us explored
the consequence of requiring the exact conservation on
the behavior of the average multiplicity in equilibrium
as well as in evolving systems. In this work, we investi-
gated the time evolution of the second factorial moment
F2 = 〈N (N − 1)〉 / 〈N 〉2 to explore the possibility of us-
ing it as a non-equilibrium measure.

To cover a wide range of physical phenomena, we stud-
ied two extreme cases. (i) The initial population of the
rare particle is much larger than the equilibrium popu-
lation. (ii) The initial population is much smaller. Our
main conclusion is that the measurement of F2 can cer-
tainly tell us if the equilibrium has not been reached.
Moreover, the approach of the second factorial moment
towards the equilibrium depends very much on the initial
condition. Assuming that the equilibrium population ε is
very small, we see that the smaller initial population re-
sults in the approach from above to the equilibrium value
(F eq.

2 = 1/2 + O(ε)). On the other hand a larger initial
population results in the approach from below with a
long period of very small F2. Hence, the experimental
value of F2 can immediately tell us if the initial pop-
ulation was smaller (F exp

2 > 0.5), larger (F exp
2 < 0.5,

possibly F exp
2 � 0.5) or the system has already reached

the equilibrium before the freeze-out (F exp
2 ' 0.5).

In summary: the essential point of this work is that
in a system in thermal equilibrium the average particle
number fixes the fluctuations. In case of rare particles
subject to U (1) charge conservation these fluctuations
are different from the simple Poisson type finite number
fluctuations and thus provide a measure of the degree
of equilibration reached in a system. This measurement
can either be achieved by measuring the inclusive one and
two particle densities or via the well known Bose-Einstein
correlations.
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APPENDIX A: INITIAL TIME EVOLUTION FOR
SMALL INITIAL PARTICLE NUMBERS

The leading time dependence of the probabilities Pn(τ )
can be obtained by Taylor expansion around the initial
time τ = 0

Pn(τ ) = Pn(τ = 0) +
∑

m

1

m!

dmPn
dτm

∣∣∣∣
τ=0

τm. (A1)

The time derivatives can be obtained by iteratively ap-
plying Eq.(1). To order τ 3

α one obtains

〈N (N − 1)〉 = ε2α2

(
(2τα + τ2

α) − α(5τ 2
α −

5

3
τ3
α) + O(α2)

)

〈N 〉2 = ε2α2
(
(1 + τα)2 − α(2τα + 3τ2

α + τ3
α) + O(α2)

)

(A2)

where we have neglected higher orders in the small vari-
able

α ≡ N0

ε
' N0

〈Neq.〉
� 1. (A3)

(A4)

We have also rescaled the time τα according to

τ = ταα. (A5)

Initially, at τ = 0, the factorial moment starts out at zero

F2(τ = 0) =
〈N (N − 1)〉
〈N 〉2

= 0. (A6)

However, after a very short time of the order of τ = N0

Neq.

corresponding to τα = 1 the factorial moment assumes a
value

F2(τα = 1) ' 3

4
(A7)

which is larger than the final equilibrium result

F2(τ →∞) ' 1

2
. (A8)

Therefore, one expects that the factorial moment F2

reaches a maximum value of about F2 ' 1 after time
of the order of τ = N0

Neq.
. Furthermore, F2 approaches

equilibrium from above thus a measurement of F2 > 1/2
will indicate that equilibrium has not been reached in a
heavy ion collision.

APPENDIX B: PERTURBATIVE SOLUTION

To solve (Eq.(15))

∂g

∂τ
= (1− x) (xg′′ + g′ − εg) (B1)
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perturbatively, we first make an ansatz

g(τ, x) = geq.(x) +

∞∑

n=1

e−n
2τan hn(x) (B2)

with

hn = h(0)
n + εh(1)

n + ε2h(2)
n + · · · (B3)

By substituting the expression (B2) into Eq.(B1) and
collecting the same powers of ε, one can easily show that

the equation for h
(0)
n is

(1 − x)
(
xh(0)′′

n + h(0)′
n

)
+ n2h(0)

n = 0 (B4)

which has the solution

h(0)
n (x) ≡ F (n,−n; 1;x) =

n∑

s=0

∏s−1
i=0 (i2 − n2)

(s!)2
xs (B5)

where F (n,−n; 1;x) is a hypergeometric function. All

other h
(s)
n ’s are determined by the functional relations

− n2h(s)
n = (1 − x)

(
xh(s)′′

n + h(s)′
n − h(s−1)

n

)
(B6)

Keeping terms up to ε and e−4τ yields the following
expressions for the relevant averages

〈N 〉 = g′(τ, 1)

= 〈N 〉eq. +
(
−1+

ε

5

)
a1e
−τ+

(
2−2 ε

65

)
a2e
−4τ

(B7)

〈N (N−1)〉 = g′′(τ, 1)

= 〈N (N−1)〉eq. −
2 ε

5
a1e
−τ+

(
6+

2 ε

13

)
a2e
−4τ

(B8)

To make a statement on how the averages behave as a
function of time, one needs to know the coefficients an.
Obviously, the initial condition fixes these coefficients

g(0, x) = geq.(x) +

∞∑

n=1

an hn(x) =

∞∑

s=0

xsPs(0) (B9)

In general, to get an, one needs to invert

Ps(0) =

∞∑

n=s

Asn an +O(ε) (B10)

where

Asn =
1

(s!)2

s−1∏

i=0

(i2 − n2) (B11)

It is not a trivial task in general to solve the above equa-
tion for all an. A simple procedure to solve for an’s can

be given only if we ignore the O(ε) corrections and also
if there is a last index N for which PN is non-zero. In
that case, we can write

Ps(0) =

N∑

n=s

Asn an (B12)

This is a triangular linear system of equations and can
be easily solved by first getting aN = PN (0)/ANN and
then aN−1 and so on.

To have a general understanding of how an’s behave,
first consider the condition

1 =

∞∑

s=0

Ps(0) =

∞∑

s=0

∞∑

n=s

Asn an

=

∞∑

n=0

an

n∑

s=0

Asn (B13)

From Eqs. (B4), (B5) and (B11), it is easy to see that

n∑

s=0

Asn = h(0)
n (1) = δ0n (B14)

Hence, the above condition constrains

a0 = 1 (B15)

Otherwise, an’s only have to make 0 ≤ Ps(0), or

0 ≤
∞∑

n=s

Asn an (B16)

If s is odd then Asn < 0 for all n ≥ s and if s is even
then Asn > 0 for all n ≥ s. To keep the probabilities
positive, an’s must have alternating signs starting with
a1 < 0 and |an| must be a monotonic decreasing function
of n. Furthermore, to keep the probabilities finite, |an|
must decrease faster than any power of n.

Numerical investigation shows that the size of as is
O(1) up to s ' √N0 and from then on |as| falls like a
Gaussian (faster for larger N0

>∼ 15). Empirically,

an = (−1)n2 exp
(
−n2/M0

)
(n ≥ 1) (B17)

where M0 ≈ N0 works up to N0 ' 15. For larger N0,
some small Ps can become negative. With M0 = 15, the
above expression (B17) gives

a1 = −1.87101 a2 = 1.53186 a3 = −1.09762

a4 = 0.688308 a5 = −0.377751 (B18)

These coefficients result in a probability distribution with
〈N 〉τ=0 = 14.8 and 〈N (N−1)〉τ=0 = 210.2 as shown in
Fig. 6.

Using the initial distribution given by a Poisson distri-
bution with N0 = 15 and solving Eq. (B12) yield
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a1 = −1.86667 a2 = 1.52 a3 = −1.08444,

a4 = 0.682074 a5 = −0.380919 (B19)

These of course result in 〈N (N−1)〉τ=0 = N2
0 = 225.

0 5 10 15 20 25 30
n

0

0.05

0.1

0.15

0.2

P
n

FIG. 6. The filled circles represents the probability distri-
bution resulting from using Eq. (B17) with M0 = 15. The
open circles represents a Poisson distribution with N0 = 15.

For completeness we also quote the results with a Pois-
sonian initial distribution with N0 = 5, solving Eq. (B12)
yields

a1 = −1.6027 a2 = 0.871375 a3 = −0.347491

a4 = 0.107955 a5 = −0.0272918 (B20)

These values are used to calculate the perturbative solu-
tions shown in Fig. 4. The Gaussian formula gives

a1 = −1.63746 a2 = 0.898658 a3 = −0.330598

a4 = 0.0815244 a5 = −0.0134759 (B21)
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